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Frequency-Weighted Minimum-Variance Adaptive
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Abstract—This paper introduces a frequency-weighting method
for adaptive disturbance rejection. The method constrains the high-
frequency gain of the prediction filter in a minimum-variance adap-
tive controller. In an experimental application, the method is used
to control a microelectromechanical system fast steering mirror to
suppress laser beam jitter. The paper analyzes the effect of sen-
sor noise on the performance of the adaptive control system and
demonstrates that sufficient levels of high-frequency noise and/or
disturbance combined with control saturation produce a spiking
phenomenon in the output error. The experimental results show
that the frequency weighting eliminates the spiking.

Index Terms—Frequency weighting, jitter suppression, laser
beam control, minimum-variance adaptive control, microelec-
tromechanical systems (MEMS) fast steering mirrors.

I. INTRODUCTION

IN THE emerging fields of laser communications and high-
energy laser systems, many applications require precise

pointing of laser beams subjected to disturbances including at-
mospheric turbulence and vibration of optical benches and com-
ponents. Vibration-induced jitter typically consists of multiple
narrow bandwidths produced by vibration modes of the structure
supporting the optical system, while turbulence-induced jitter
usually has broader bandwidths [1], [2]. Also, as in this paper,
the fast steering mirrors used for actuation may have lightly
damped elastic modes that create another source of beam jitter.
This complex combination of disturbances, which often change
with time, necessitates the use of controllers capable of rejecting
disturbances with broadband spectra.

The well-known waterbed constraint described by the Bode
integral sensitivity theorem [3] makes it impossible to achieve
the needed broadband jitter rejection with linear time-invariant
(LTI) controllers. Recent literature on control of jitter in laser
beams has introduced adaptive control methods that reject jit-
ter over much greater bandwidths than those achieved by LTI
feedback control. For laser beams, adaptive controllers based
on least-mean-squares (LMS) adaptive filters are presented
in [4]–[8], and adaptive controllers based on recursive least-
squares (RLS) filters are reported in [9]–[14]. Adaptive con-
trol has been used for disturbance rejection in other applica-
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tions, including the reduction of the read–write head position
error in computer disk drives [15]–[20]. While LMS algorithms
are simple and computationally economical, the more complex
RLS algorithms achieve faster convergence and exact minimum-
variance steady-state performance.

The hardware and geometry of beam steering applications
dictate saturation limits on the magnitude of the control com-
mands. Any fast steering mirrors, but especially the micromir-
rors used here and in various optical communications systems,
can be damaged if the control commands are too large. Also,
because small angles of steering-mirror deflection can produce
large beam displacements at remote receivers and targets, the
mirror rotation must be limited so that the laser beam hits all
reflecting surfaces and sensors in the optical path. Either type
of constraint can be binding in field applications.

A common characteristic of minimum-variance controllers,
adaptive or not, is that they amplify low-level high-frequency
noise while minimizing the mean-square values of the output
errors. This results from the fact that such controllers must
have large high-frequency gains to predict broadband distur-
bances. In some applications, this amplification results in the
fast steering mirrors being driven with potentially damaging
levels of high-frequency power, even if the amplitude limit on
the driving current is not reached. But more serious is a spiking
phenomenon, which is illustrated in this paper, in output error
produced by the combination of control signal saturation and
amplified high-frequency noise.

This paper presents a method for incorporating frequency
weighting in the adaptive control loop to constrain the high-
frequency gain of the adaptive filter that generates the adaptive
control command. The frequency responses of both experimen-
tal and theoretically computed steady-state filters demonstrate
that the frequency weighting reduces the high-frequency gains.
Experimental results show that the frequency weighting indeed
reduces the amplification of high-frequency noise and elimi-
nates the spikes in the output error. Furthermore, because of
the high sampling rate and high adaptive filter order used here,
the experimental results represent a substantial improvement
in performance over results achieved previously with the same
microelectromechanical systems (MEMS) steering mirror [13].

This paper is organized as follows. Section II describes the
experimental setup and explains some practical issues relating
to the real-time implementation of the controller. Section III
describes modeling and identification of the open-loop and
closed-loop plants. Section IV discusses the disturbance spec-
trum used in the experiments and the disturbance and sensor
noise models used in calculating the theoretical steady-state per-
formance of the adaptive control system. Section V describes the
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Fig. 1. Photograph of the experiment with optical path shown. Position ©1 : laser source. Position ©2 : Fast steering mirror FSM-C (control actuator) mounted on
shaker. Position ©3 : Fast steering mirror FSM-D (disturbance actuator). Position ©4 : ON-TRAK optical position sensor. FSM-C and FSM-D are TI Incorporated
Analog MicroMirrors.

frequency-weighted adaptive control loop and discusses the
method for computing the theoretically predicted steady-state
performance. The adaptive controller does not require the dis-
turbance and noise models discussed in Section IV, but the the-
oretical calculations do. Subsequent comparison between theo-
retical and experimental performance is valuable for evaluating
the adaptive control design. Section VI discusses two motiva-
tions for the frequency weighting in this paper: the spikes in the
output error that sometimes occur without frequency weighting
and robustness with respect to high-frequency plant modeling
error.

A simulation in Section VI-B demonstrates the fundamental
nature of the spikes in the output error that are observed in ex-
perimental results in Section VII. The experiments discussed
in Section VII demonstrate the capability of the frequency-
weighted adaptive controller to suppress broadband jitter in the
presence of sensor noise concentrated at high frequencies and
in the presence of white sensor noise.

II. DESCRIPTION OF THE EXPERIMENT

Fig. 1 shows the optical bench and the laser path in the exper-
iment. The laser beam leaves the source at position ©1 in Fig. 1,
reflects off the fast steering mirror FSM-C at position ©2 , then
reflects off the fast steering mirror FSM-D at position ©3 , and
finally, reaches the optical position sensor at position ©4 . Two
lenses in the optical path focus the beam on FSM-D and the
sensor.

The mirrors FSM-C and FSM-D are identical Texas Instru-
ments (TI) MEMS mirrors used in laser communications for
commercial and defense applications. FSM-C is the control ac-
tuator, and FSM-D is used to add jitter (i.e., disturbance) of
specified bandwidths to the laser beam on both mirror axes. In
addition to FSM-D, a second source of jitter is the shaker on
which the control actuator FSM-C is mounted. The shaker adds
vertical jitter with narrow frequency bands to create the effect
of a vibrating platform.

The commanded rotations of the fast steering mirrors are pro-
duced by electromagnetic fields with opposing directions. These
fields are created by coils with currents commanded by the con-

trol and disturbance computers. The mirrors have a rotation
range of ±5◦. The reflecting area of the mirrors is 9 mm2 . The
optoelectronic position sensor at the end of the beam path gener-
ates two analog output voltages proportional to the coordinates
of the laser beam centroid. In the sensor, quad photodetectors
capture the laser intensity and generate current outputs, which
are converted to voltage and amplified by an operational am-
plifier. Further electronic processing of these signals yields two
final signals, which are the estimates of the centroid coordinates
independent of light intensity.

The output error in the control problem is the pair of sensor
measurements, which are the coordinates of the laser beam spot
on the sensor. These measurements, in the form of voltages,
go to computer 1, which runs both the LTI feedback and the
adaptive controllers and sends actuator commands in volts to
FSM-C. Computer 2 sends disturbance commands to FSM-D
and the shaker. Computers 1 and 2 are PCs running xPC Target,
and the sample-and-hold rate for the control system is 5 KHz.

The only physical measurements used by the adaptive and
feedback controllers are the two signals from the ON-TRAK
sensor, which are essentially noise free. To make the experiments
more realistic and challenging, artificial sensor noise is added
to the measurements inside computer 1.

III. PLANT MODELS

A. Open-Loop Plant

The open-loop discrete-time plant P (z) is the transfer func-
tion that maps the two-channel digital control command to the
sampled two-channel output of the optical position sensor. Thus,
P (z) is the two-input–two-output digital transfer function for
the fast steering mirror FSM-C with a gain determined by the op-
tical position sensor and the laser path length. Output channels
1 and 2 represent horizontal and vertical displacements, respec-
tively, of the beam; input channels 1 and 2 represent commands
that drive FSM-C about its vertical and horizontal axes, respec-
tively. Input–output data from open-loop experiments showed
negligible coupling between the two channels of the open-loop
plant; so henceforth, all discussion and control designs assume
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Fig. 2. Bode plots for identified transfer functions P̂ (left) and Ĝ (right).

Fig. 3. Top: LTI feedback control system: P (z) = open-loop plant, C(z) =
classical LTI feedback controller, y = output error = position of laser spot
on optical sensor, u = adaptive control command, w0 = jitter on laser beam,
η0 = sensor noise, ỹ = noisy measurement fed back to control loops. Bottom:
Equivalent system G(z) = y/u, w = combined effects of the disturbance w0
and the sensor noise η0 with the LTI feedback loop closed.

that P (z) has two uncoupled channels. The subspace system
identification algorithm n4sid in MATLAB [21] was used to
identify an estimate P̂ (z) of P (z) from 30 000 samples of input–
output data. The uncoupled channels of P̂ (z) were identified
separately. Fig. 2 shows the Bode plots of P̂ (z).

B. Closed-Loop System With LTI Feedback Control

The LTI feedback control loop is shown in Fig. 3. The clas-
sical digital controller C(z) consists of a integrator and a notch
filter. The integrator gain and notch parameters were tuned to
maximize the disturbance-rejection bandwidth. The input u in
Fig. 3 is the adaptive control command, and the output y is
the position of the laser spot on the optical position sensor.
The signal w0 represents the combined disturbances acting on
the system, and the signal η0 is the sensor noise added to the
measured output y to generate the noisy measurement ỹ.

The closed-loop LTI system in the top diagram in Fig. 3,
without the output ỹ, can be represented as in the bottom diagram

Fig. 4. Bode plots for estimated sensitivity transfer function Ŝ and identified
jitter model W1 (discussed in Section IV).

in Fig. 3 with

G = P (I + PC)−1 (1)

w = (I + PC)−1(w0 − PCη0). (2)

The closed-loop plant dynamics were reidentified by the afore-
mentioned subspace identification method as Ĝ(z), which has
two uncoupled fourth-order channels. Each channel of Ĝ(z) is
stable with one zero outside the unit circle. The Bode plots for
Ĝ(z) are shown in the second column of Fig. 2.

The two-channel output sensitivity transfer function for the
closed-loop LTI system is

S =
y

w0
= (I + PC)−1 . (3)

An estimate of S, computed as Ŝ = (I + P̂C)−1 , is shown in
Fig. 4, which shows that the error-rejection bandwidth is about
200 Hz. Because the gain of the controller C(z) was chosen to
maximize the error-rejection bandwidth, the LTI loop amplifies
high-frequency disturbance above about 300 Hz.

IV. DISTURBANCE AND IDENTIFIED DISTURBANCE MODELS

The disturbance w0 is created by the disturbance mirror FSM-
D and the shaker. The MEMS mirror FSM-D produces jitter
with multiple bandwidths and the shaker produces jitter with
two narrow bandwidths, as described in Table I. Passing white
noise through filters with the bandwidths in Table I produces the
disturbance commands to FSM-D. The sensor noise η0 , gener-
ated by the real-time computer, is the output of a stable linear
filter N0 driven by a white noise sequence εη . (For white sen-
sor noise, N0 = 1.) The sequences w0 and η0 are independent.
Subsequent analysis uses the sequences

w1 = (I + PC)−1w0 and η1 = (I + PC)−1η0 . (4)
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TABLE I
JITTER BANDWIDTHS

Each of the two-input–two-output transfer functions P , C, and
Ĝ has uncoupled channels, and each of the sequences in (4) is
modeled as having two uncorrelated channels.

The adaptive controller implicitly identifies certain statistics
of the sequence w + η0 but otherwise requires no information
about any of the sequences in (2) and (4). For theoretical analysis
of the performance of the adaptive controller, this paper assumes
that all sequences in (4) are stationary with zero mean. Also, the
analysis assumes the disturbance models

w0 = W0εw η0 = N0εη w1 = W1εw η1 = N1εη

(5)
where W0 , N0 , W1 , and N1 are finite-dimensional stable LTI
filters, and the sequences εw and εη are independent, stationary,
white, and zero-mean, with

E{εw εT
w} = E{εη εT

η } = I (=2 × 2 identity matrix). (6)

It must be emphasized that none of the disturbance models
are used by the adaptive controller. The disturbance models W1
and N1 are required for computing the theoretical optimal con-
troller and corresponding performance to which the adaptive
controller should converge. These theoretical results are com-
pared in Section VII to the experimental performance of the
adaptive controller.

The disturbance models W1 and N1 were identified from ex-
perimental output data taken with the LTI feedback loop closed
and with the adaptive control signal u = 0. For identification of
W1 , the sensor noise η0 was zero, and for identification of N1 ,
the disturbance w0 was zero. This identification, performed with
the n4sid system identification algorithm in MATLAB, pro-
duced state-space models in innovations form. Each of the iden-
tified models W1 and N1 has 64 states for each channel. In prin-
ciple, W1 and N1 can be constructed as W1 = (I + PC)−1W0
and N1 = (I + PC)−1N0 , but since this construction would
be based on estimated models for P and W0 , the disturbance
models W1 and N1 were identified directly.

The identified disturbance model W1 is shown in Fig. 4,
where the left and right Bode plots correspond to axis 1 and
axis 2, respectively. These Bode plots represent the statistics
of the disturbance to which the laser beam is subjected. Fig. 4
compares W1 to the LTI output-disturbance sensitivity function.
These plots show that much of the jitter is far beyond the error-
rejection bandwidth of the LTI feedback controller.

Fig. 5. Block diagram of the adaptive control system.

V. FREQUENCY-WEIGHTED ADAPTIVE CONTROL

A. Adaptive Control Loop

The class of adaptive controllers considered in this paper is
illustrated in Fig. 5. Since the two channels of the plant are
modeled as uncoupled and each control loop has two indepen-
dent channels, the discussion in this section is simplified by
considering a single channel of the beam steering system. Thus,
in this section, all signals are scalar sequences and all transfer
functions are single-input–single-output (SISO). The equations
and block diagrams are the same for each channel. The trans-
fer functions G(z) and Ĝ(z) (discussed in Section III) and the
frequency-weighting filter H(z) are assumed to be stable.

For each channel, the adaptive controller has two copies of
the adaptive filter F (z). The gains are updated in the copy
of F (z) in the bottom portion of Fig. 5 to minimize the rms
value of the tuning signal e. The other copy of F (z) uses the
same gains to generate the adaptive control signal u. The block
labeled Sat in Fig. 5 saturates the adaptive control command so
that |usat | ≤ 1 V. The saturation limit is chosen to satisfy two
requirements: that the driving current for FSM-C not exceed the
specified limit, and that the laser beam not veer off the reflecting
surface of FSM-D.

The adaptive filter F (z) has finite-impulse response (FIR), so
that it can be written as

F (z) =
L∑

l=0

flz
−l (7)

with gains fl and order L. However, the adaptive filter here
has the lattice realization as in [22], rather than the realization
in (7). The lattice realization has an order-recursive structure
discussed in [13], [14], and [22], which allows variable-order
adaptive control. The lattice filter generates adaptive control
commands of all orders n ≤ L. During adaptation, lattice-filter
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orders n < L are used, with the order increasing to the maximum
order L in steady state. For the experiments and simulations in
this paper, L = 80.

For high orders of F , the RLS lattice filter is more com-
putationally efficient and numerically stable than the classical
RLS algorithm, which has been used for low-order filters in
various adaptive control applications other than control of laser
beams (e.g., [18]–[20]). Lattice-filter-based variable-order adap-
tive control (without frequency weighting) and the improved
transient response that it provides are discussed in detail in [13].

The lattice gains, or reflection coefficients, are updated by
the RLS lattice algorithm in [22] to minimize the rms value of
the tuning signal e in Fig. 5. Thus, the least squares criterion
for the adaptive filter is

Je(F,H) = rms(e) =
√

E{e2} . (8)

In evaluation of the performance of the adaptive controller,
the error signal of primary interest is the laser beam position
y in Fig. 5. This signal is available to the control loops only
when there is zero sensor noise. However, in the experiments
described in this paper, y can be measured (though it is not used
by the control loops), and Section VII presents values for the
performance index

Jy (F,H) = rms(y) =
√

E{y2}. (9)

B. Theoretical Minimum-Variance Performance

The theoretical results here facilitate analysis of the effect
of the frequency-weighting filter H on the performance of the
adaptive controller. Comparison of the experimental results in
Section VII to the theoretically predicted performance provides
an important evaluation of the adaptive controller.

The theoretical analysis here assumes that

G(z) = Ĝ(z) (10)

and that the adaptive control command u is not saturated. When
(10) holds, the input to the adaptive filter F is

ŵ = w + η0 = (I + PC)−1(w0 + η0) = w1 + η1 . (11)

According to (4), w1 depends only on the jitter produced by the
disturbance mirror and the shaker, and η1 depends only on the
sensor noise.

The tuning signal is

e = Hỹ + H[FĜ − ĜF ]ŵ. (12)

When the gains in F have converged to steady-state values,
the transfer functions F and Ĝ commute, so that the tuning
signal is e = Hỹ. During adaptation, the time-varying filter F
does not commute with Ĝ exactly, but according to swapping
lemmas used in analysis of adaptive control [23]–[25], the term
[FĜ − ĜF ]ŵ in (12) diminishes as the gains in F converge.

For theoretical steady-state analysis, the disturbance models
discussed in Section III are used, and the sequences εw and εη

are mutually independent with unit variance in each channel. It
follows from Figs. 5 and 6 that the steady-state tuning signal e

Fig. 6. Theoretical closed-loop system. G(z) = closed-loop plant in Fig. 3,
W1 (z) = jitter model, N0 (z) and N1 (z) = sensor noise models, H (z) =
weighting filter.

and beam position y satisfy

e = (H + FĜH) [ W1 N1 ]
[

εw

εη

]
(13)

y =
[
(I + ĜF )W1 [(I + ĜF )N1 − N0 ]

] [
εw

εη

]
(14)

and the theoretical steady-state rms values of these signals can
be calculated as

Je(F,H) =
∥∥∥(I + FĜ)H [ W1 N1 ]

∥∥∥
2

(15)

Jy (F,H) = ‖ (I + ĜF )W1 [(I + ĜF )N1 − N0 ] ‖2 . (16)

In steady state, the adaptive control loop minimizes Je(F,H)
over the set of FIR filters of order L.

To compare results from experiments with different noise
statistics, the following normalized Jy (F,H) will be used:

J̄y (F,H) =
Jy (F,H)

min
F

Jy (F,H = 1)(N0 = N1 = 0)
(17)

where the denominator is the minimum, over FIR filters F of
order L, of Jy (F,H) in (16) with H = 1 and N0 = N1 = 0.

For theoretical analysis, with the assumed disturbance mod-
els and the condition (10), the minimization of J(F,H) over
FIR filters of order L can be formulated as a Wiener–Hopf prob-
lem [26], although the formulation is rather complicated for the
problem here. The current problem falls into the class of prob-
lems discussed in [27], which provides an efficient numerical
algorithm for computing the optimal filter F and the minimum
output-error variance from plant and disturbance models. This
algorithm was used to compute the theoretical steady-state fil-
ters F in Section VII of this paper. The theoretical performance
indexes Jy (F,H) and J̄y (F,H) were given by (16) and (17).
Application of the algorithm in [27] to the current problem is
based on the block diagram in Fig. 6.

VI. MOTIVATION FOR FREQUENCY WEIGHTING

A. High-Frequency Gain of the Adaptive Filter

The adaptive filter F that generates the adaptive control com-
mand typically has large high-frequency gains, which amplify
high-frequency sensor noise and increase the sensitivity of the
closed-loop system to high-frequency modeling error in Ĝ. The
frequency response of F depends on the frequency content of the
jitter and noise sequences, as well as on the plant transfer func-
tion. Fundamentally, F predicts the jitter, and prediction filters
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Fig. 7. Block diagram extracted from Fig. 5. The input sequence usat − u
produces the spikes in the output sequence y.

typically have large high-frequency gain. Also, the minimum-
variance F is, in a certain sense, an approximate inverse of the
plant transfer function G, which rolls off at high frequencies, as
shown by the Bode plot of Ĝ in Fig. 2. The frequency-weighting
filter H in Fig. 5 is used to reduce the high-frequency gain of F .

The question then is, what type of weighting filter H will
lead to an FIR filter F with reduced high-frequency gain? The
somewhat counterintuitive answer is a high-pass filter H . The
sense in which F inverts G is that F minimizes the 2-norm
of I + FĜ weighted as in (15), which shows that a high-pass
H penalizes the high-frequency gain of F . The Bode plots in
Section VII for both the theoretical and experimental filters F
show that high-frequency weighting filters H indeed reduce the
high-frequency gains of F . Theory and experiment show that
H also reduces ‖F‖1 and ‖F‖∞.

Low-pass filters have been used in adaptive control of com-
puter hard drives [18]. However, low-pass filters, whether used
as in [18] or as H here or in other ways tried by the authors
of this paper, have not reduced the high-frequency gain of F or
otherwise improved the performance in the class of applications
considered in this paper.

B. Output Spikes Produced by Control Signal Saturation

Experimental results in Section VII show that the combina-
tion of control saturation and excessively large high-frequency
gain in the filter F produce a spiking phenomenon in the out-
put error when the jitter or the sensor noise has high-frequency
components of sufficient amplitude. One might suspect, as the
authors first did, that the phenomenon reflects some instability
of the adaptive control loop, possibly associated with parameter
drift. However, careful analysis of several sets of experimental
results indicated that this is not the explanation. The SISO sim-
ulation in this section, which uses an LTI filter F in the control
system instead of the adaptive filter, produces the same spiking
phenomenon and reveals the true nature of the phenomenon.

The block diagram in Fig. 7, which is extracted from Fig. 5 for
the case where Ĝ = G, represents the saturated control signal
usat as the sum of the minimum-variance control command
u generated by the filter F and the input sequence usat − u.
When high-frequency jitter or sensor noise causes the output of
the filter F to saturate, the input sequence usat − u consists of
randomly occurring impulses that produce spikes in the output
error y.

The simulation represented by Fig. 8 provides the simplest
demonstration of the nature of the spiking phenomenon ob-
served in the first set of experimental results in Section VII.
In this simulation, the sensor noise is zero (i.e., εη , η0 , and
η1 are zero), so that the simulation results show that sufficient
high-frequency power in the jitter alone can produce control
saturation and spiking in the output error.

Fig. 8. Block diagram of simulations with LTI filter F (z). Block labeled Sat
represents control saturation.

Fig. 9. Results of the simulation in Fig. 8. The control signals u and usat are
zero until t = 8 s. Saturation limit for |usat | = 1. Zoomed views on the right
show the nature of the spikes in the output error.

The transfer function Ĝ used in the simulation is the first chan-
nel of the Ĝ discussed in Section III-B, and (10) is assumed.
The jitter model W1 used in the simulation was identified as dis-
cussed in Section IV from input–output data from an experiment
similar to those discussed in Section VII, except with no sensor
noise. This jitter model was scaled by a gain so that, even in
the absence of sensor noise, the control signal u saturates. The
LTI filter F in the simulation minimizes Je(F,H = 1), which
is equal to Jy (F,H = 1) under the conditions of the simulation.
Thus, F minimizes Je(F,H) as given in (15) with H = 1 and
N1 = N0 = 0.

The simulation generates the output error ylin with no con-
trol saturation and the output error ysat with control saturation.
The plots on the left in Fig. 9 show ylin and ysat and control
signals u and usat . The unsaturated control signal u is optimal
for the disturbance in the simulation. However, the large high-
frequency gain in F causes u to exceed the saturation limit at
random sample times. The plots on the right in Fig. 9 show
zoomed views of ysat − ylin and usat − u for typical spikes in
the output error. The input sequence usat − u is a sequence of
impulses at random times, which generates the corresponding
sequence y − ysat of impulse responses of the transfer function
Ĝ. These impulse responses are the spikes in ysat .
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Fig. 10. Left: Single spike in output error ysat from the simulation in Fig. 8
and impulse response of Ĝ. Right: Single spike in experimental output error y

in Fig. 13 and impulse response of Ĝ.

Occasionally, there is a single isolated impulse producing an
isolated spike, as in Fig. 10, where the plot on the left is from
the simulation and the plot on the right is from the experimental
output error in Fig. 13. Fig. 10 shows that the spikes in the
simulation and the experiment are indeed very similar and that
they are impulse responses of the plant. It should be emphasized
that the filter F in the simulation is LTI whereas the filter F in
the experiments is adaptive, although most of the spikes in the
experiment are observed in steady state, where the adaptive filter
is very similar to the LTI filter in the simulation.

In the experiments and simulations described in this paper,
the control signal remains at one saturation limit for very short
durations, almost always over one sample period only. However,
it seems possible that spikes similar to those here could occur
if the control signal remained at one saturation limit for a few
consecutive sample times, at least for fast sample-and-hold rates.

While there is extensive literature on control under satura-
tion constraints (e.g., [28]–[35] and many other references), it
appears that the spiking phenomenon here has not been seen in
previously published examples, where the control bounds are
typically binding over longer time intervals. However, certain
output transients in [36] and [37], which treat nonadaptive con-
trol in a different class of applications, may be related to the
impulses observed here.

C. Plant Model Uncertainty

Another important reason for frequency weighting is stabil-
ity robustness to high-frequency modeling error. The results in
Sections V-B and VI-B require (10), but in applications, the
modeling error ∆G = G − Ĝ is not zero. This error can affect
the stability of the adaptive control system.

Fig. 5, without the bottom part showing how F is iden-
tified and without the saturation block, is equivalent to
Fig. 11, from which it follows that a sufficient condition for
closed-loop bounded-input–bounded-output (BIBO) stability is
‖∆G‖1‖F‖1 < 1. In the case of LTI F and G, a sufficient condi-
tion for asymptotic stability is ‖∆G‖∞‖F‖∞ < 1. Thus, smaller
values of ‖F‖1 and ‖F‖∞ increase the stability robustness of
the closed-loop system.

VII. EXPERIMENTAL RESULTS

This section presents detailed results for two experiments de-
signed for studying the effect of sensor noise on the performance

Fig. 11. Closed-loop system with modeling error.

of the adaptive controller. Because the signals from the optical
position sensor used in these experiments have negligible sensor
noise, the two-channel sensor noise η0 was added in software
so that the statistics of η0 are known precisely. This is ideal for
studying the effects of the noise.

Results for two types of sensor noise are presented: high-
frequency noise between 1.5 and 2.5 KHz (the Nyquist fre-
quency) and white noise. The jitter and sensor noise were gen-
erated as described in Section IV. In all cases with frequency
weighting, the filter H was a high-pass linear-phase FIR filter of
order 16. The filter H used for the experimental results reported
here had the cutoff frequency 700 Hz.

A. Effects of the Bandwidth of the Weighting Filter

The Bode plots on the left in Fig. 12 show how the high-pass
weighting filter H with different cutoff frequencies theoretically
affects the frequency response of the steady-state filter F . The
plots on the right in Fig. 12 show how the theoretical values
of ‖F‖1 and ‖F‖∞ and the normalized rms steady-state po-
sition error J̄y (F,H) vary with the lower cutoff frequency of
H . The experimental values of ‖F‖1 , ‖F‖∞, and J̄y (F,H) are
shown in Fig. 12 for the case of no frequency weighting (cutoff
frequency = 0) and for the cutoff frequency 700 Hz.

Table II lists experimental steady-state data for the two
types of sensor noise and the case of no sensor noise. The
signal-to-noise ratio (SNR) in the table is based on (11) and
given by

SNR =
rms(w1)
rms(η1)

. (18)

The cutoff frequency 700 Hz was chosen for the weighting
filter H because the plots of the theoretical values of ‖F‖1 ,
‖F‖∞, and J̄y (F,H) indicate that higher cutoff frequencies
produce at most negligible further reductions in ‖F‖1 and ‖F‖∞
while increasing J̄y (F,H). The plots in Fig. 12 depend on both
the jitter statistics, represented by W1(z), and the sensor-noise
statistics, represented by N0(z) and N1(z). In most applications,
these statistics are not known, so it is noteworthy that the plots in
Fig. 12 indicate that a cutoff frequency between 600 and 700 Hz
is a good choice in terms of the tradeoff between reducing the
norms of F and increasing J̄y (F,H), for either type of sensor
noise. The adaptive controller requires no information about
disturbance and sensor-noise statistics, but ballpark a priori
estimates can be useful in choosing the cutoff frequency of H .

For the theoretical results in Fig. 12, the theoretically optimal
steady-state filter for each noise spectrum and bandwidth of H
was computed with the algorithm in [27] for the optimal control
problem defined in Section V-B. The corresponding theoretical
steady-state performance was given by (16) and (17). In the
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Fig. 12. Plots illustrate effects of H with different cutoff frequencies on the steady-state filter F and steady-state performance of the adaptive controller. Left:
Bode plots of theoretical optimal FIR filter F for cutoff frequencies of H = 500, 700, 900 Hz. No filter means H = 1. Right: Theoretical and experimental norms
of F and normalized rms steady-state output error values J̄y (F, H ) [in (17)] versus cutoff frequency of H . Cutoff frequency = 0 means H = 1. Experimental
results are represented by the symbol � for H cutoff frequencies 0 and 700 Hz.

TABLE II
EXPERIMENTAL RESULTS WITH DIFFERENT TYPES OF SENSOR NOISE
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Fig. 13. Experimental results for the case of high-frequency sensor noise. Cutoff frequency of weighting filter H = 700 Hz. The LTI feedback control loop
described in Section III-B was closed from the beginning of the each experiment, and the adaptive loop was closed at t = 8 s.

plots on the right in Fig. 12, the experimental results agree
closely with the theoretical results, except for the normalized
rms output error in the case with high-frequency sensor noise
and no frequency weighting.

B. High-Frequency Sensor Noise and Control Saturation

Fig. 13 shows experimental results for the case of high-
frequency sensor noise. Without frequency weighting, the ex-
perimental steady-state output error is larger than predicted
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Fig. 14. Experimental results for the case of white sensor noise. Cutoff frequency of weighting filter H = 700 Hz. The LTI feedback control loop described in
Section III-B was closed from the beginning of the each experiment, and the adaptive loop was closed at t = 8 s.

theoretically because control saturation (which is not modeled
in the theoretical calculations) produces the spikes shown in the
time-series plots of the output errors in Fig. 13. The nature of
these spikes is described in Section VI-B. The results in Fig. 13
show that the frequency weighting in the adaptive control loop
eliminates the spikes by reducing the high-frequency gains of

the adaptive filter F . The Bode plots in Fig. 13 show close agree-
ment between the theoretical steady-state filters F and those to
which the adaptive lattice filter converged in the experiment.

The results in Table II for high-frequency sensor noise show
that the adaptive controller without frequency weighting reduces
the rms output error by approximately a factor of 4 even while
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generating the spikes. However, such spikes in output error are
undesirable in any practical control system.

In the absence of control saturation, adaptive control with fre-
quency weighting produces larger values of rms(y) than adap-
tive control without frequency weighting. However, when the
spikes produced by control saturation are sufficiently severe, the
value of rms(y) can be substantially larger than the linear theory
predicts and larger than rms(y) with frequency weighting. For
example, for the high-frequency noise, adaptive control with-
out frequency weighting produces rms(y) = 0.146 for channel
2 whereas adaptive control with frequency weighting produces
rms(y) = 0.111. Examination of the time series for channel 2 in
Fig. 13 suggests that the rms value of the output error y should
be smaller with H .

The power spectral densities (PSDs) of the output errors in
Fig. 13 show that, in steady state, the adaptive controller exhibits
a common characteristic of minimum-variance controllers: the
tendency to whiten residual errors. This means that the adap-
tive controller reduces the output-error PSDs in bandwidths of
large jitter at the minor expense of amplifying low-level jitter
and sensor noise. The PSDs show the output errors without fre-
quency weighting to be nearly white, even with the spikes due
to control saturation. With frequency weighting, which penal-
izes high-frequency error more, the adaptive controller ampli-
fies low-level jitter and sensor noise less at high frequencies and
more at low frequencies.

The Bode plots in Fig. 13 show that, as predicted theoretically,
the weighting filter H reduces the high-frequency gain of the
steady-state adaptive filter F . The close agreement between the
theoretical F and experimental F is noteworthy.

Another point to note from the PSD plots in Fig. 13 is that the
adaptive controller with H reduces the jitter by more than 20 dB
in the 1100–1150 Hz band. Fig. 2 shows that the open-loop and
LTI closed-loop plants have low gain in this band so that large
control power in the 1100–1150 Hz band is required to achieve
the jitter rejection shown in Fig. 13.

C. White Sensor Noise

Fig. 14 shows experimental results for the case of white sensor
noise. As indicated in Table II, the rms SNRs are almost identical
for white and high-pass sensor noise. The jitter statistics are the
same for the two cases also. Yet, the spikes do not appear in
the output error for the white-noise case because the steady-
state filter F has significantly lower high-frequency gain in this
case so that the control signal does not saturate.

The high-frequency gains in F are lower with white sensor
noise than with no noise, for the same jitter statistics [38]. How-
ever, this does not mean that the saturation-induced spikes in
the output error never occur with white noise. As the simulation
discussed in Section VI-B shows, the spikes can occur even with
no sensor noise. The phenomenon occurs when there is suffi-
cient high-frequency power in the control signal to cause control
saturation like that in the example in Section VI-B. The high-
frequency power in the control signal results from a combination
of jitter and sensor-noise statistics and the high-frequency gain
of F .

As shown in Table II and the time-series plots in Fig. 14, the
frequency-weighted adaptive controller yields larger rms output
errors than the adaptive controller without frequency weighting.
This is expected because the frequency-weighted adaptive filter
minimizes the frequency-weighted rms output error instead of
the ordinary rms error.

The Bode plots in Fig. 14 show that, again, the weighting filter
H reduces the high-frequency gain of the steady-state adaptive
filter F . Again, the theoretical F and experimental F agree
closely.

VIII. CONCLUSION

This paper has introduced a frequency-weighting method for
minimum-variance adaptive control, and presented experimen-
tal results that demonstrate the effectiveness of the method in
control of an MEMS mirror for suppression of laser beam jitter.
Output errors in both experimental results and a simulation illus-
trate a spiking phenomenon produced by the minimum-variance
controller when high-frequency noise or disturbance causes ran-
domly occurring control signal saturation of short duration. The
experimental results show that the frequency weighting pre-
sented in the paper eliminates the spiking.

Aside from the frequency weighting method presented here
and the spiking phenomenon discussed, the results in this pa-
per represent a significant advance beyond those in [13]. Here,
as in [13], lattice-filter-based adaptive control suppressed laser
beam jitter in simultaneous multiple bandwidths, but the im-
proved adaptive control loop here rejected jitter at frequencies
greater that 1100 Hz, more than three times the highest fre-
quencies at which jitter was controlled in [13] with the same
MEMS mirror—which has a natural frequency of vibration at
approximately 120 Hz on each axis. This increased frequency
range has resulted from the higher sampling rate of 5 KHz and
higher adaptive filter order of 80 here, as opposed to the 2 KHz
sampling rate and filter order 16 in [13], as well as the frequency
weighting in the case of high-frequency sensor noise.
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Control Design. New York: Wiley, 1995.

[26] S. Haykin, Modern Filters. New York: Macmillan, 1998.
[27] P. K. Orzechowski, J. S. Gibson, and T.-C. Tsao, “Characterization of

optimal FIR gains and minimum-variance performance for adaptive dis-
turbance rejection,” in Proc. Amer. Control Conf., New York, Jun. 2007,
pp. 1908–1913.

[28] J. C. Doyle, R. S. Smith, and D. F. Enns, “Control of plants with input
saturation nonlinearities,” in Proc. Amer. Control Conf., Minneapolis, MN,
Jun.1987, pp. 1034–1039.
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